Cremona's table of elliptic curves

Curve 99600di1

99600 = 24 · 3 · 52 · 83



Data for elliptic curve 99600di1

Field Data Notes
Atkin-Lehner 2- 3- 5- 83+ Signs for the Atkin-Lehner involutions
Class 99600di Isogeny class
Conductor 99600 Conductor
∏ cp 120 Product of Tamagawa factors cp
deg 276480 Modular degree for the optimal curve
Δ -12546731520000 = -1 · 212 · 310 · 54 · 83 Discriminant
Eigenvalues 2- 3- 5- -3 -3 -4 -5 -2 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-33608,2366388] [a1,a2,a3,a4,a6]
Generators [94:216:1] [-122:2160:1] Generators of the group modulo torsion
j -1639927598425/4901067 j-invariant
L 12.024309675652 L(r)(E,1)/r!
Ω 0.71386701836348 Real period
R 0.14036589176426 Regulator
r 2 Rank of the group of rational points
S 0.9999999999676 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 6225b1 99600cb1 Quadratic twists by: -4 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations