Cremona's table of elliptic curves

Curve 99990b1

99990 = 2 · 32 · 5 · 11 · 101



Data for elliptic curve 99990b1

Field Data Notes
Atkin-Lehner 2+ 3+ 5+ 11- 101- Signs for the Atkin-Lehner involutions
Class 99990b Isogeny class
Conductor 99990 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 138240 Modular degree for the optimal curve
Δ -240545943000 = -1 · 23 · 39 · 53 · 112 · 101 Discriminant
Eigenvalues 2+ 3+ 5+ -3 11- -5  3  2 Hecke eigenvalues for primes up to 20
Equation [1,-1,0,-285,23741] [a1,a2,a3,a4,a6]
Generators [7:-152:1] Generators of the group modulo torsion
j -130323843/12221000 j-invariant
L 3.1459477149651 L(r)(E,1)/r!
Ω 0.81328206148742 Real period
R 0.96705308787953 Regulator
r 1 Rank of the group of rational points
S 0.99999999982559 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 99990o1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations