Cremona's table of elliptic curves

Curve 113925by1

113925 = 3 · 52 · 72 · 31



Data for elliptic curve 113925by1

Field Data Notes
Atkin-Lehner 3- 5+ 7- 31+ Signs for the Atkin-Lehner involutions
Class 113925by Isogeny class
Conductor 113925 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 28800 Modular degree for the optimal curve
Δ -356015625 = -1 · 3 · 57 · 72 · 31 Discriminant
Eigenvalues -1 3- 5+ 7- -2  2  0  4 Hecke eigenvalues for primes up to 20
Equation [1,0,0,62,-883] [a1,a2,a3,a4,a6]
Generators [13:40:1] Generators of the group modulo torsion
j 34391/465 j-invariant
L 5.0156147077071 L(r)(E,1)/r!
Ω 0.83402943526151 Real period
R 3.0068571287603 Regulator
r 1 Rank of the group of rational points
S 1.0000000003356 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 22785g1 113925f1 Quadratic twists by: 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations