Cremona's table of elliptic curves

Curve 22785g1

22785 = 3 · 5 · 72 · 31



Data for elliptic curve 22785g1

Field Data Notes
Atkin-Lehner 3+ 5- 7- 31+ Signs for the Atkin-Lehner involutions
Class 22785g Isogeny class
Conductor 22785 Conductor
∏ cp 1 Product of Tamagawa factors cp
deg 1200 Modular degree for the optimal curve
Δ -22785 = -1 · 3 · 5 · 72 · 31 Discriminant
Eigenvalues  1 3+ 5- 7- -2 -2  0  4 Hecke eigenvalues for primes up to 20
Equation [1,1,0,3,-6] [a1,a2,a3,a4,a6]
Generators [14:48:1] Generators of the group modulo torsion
j 34391/465 j-invariant
L 5.1263835565752 L(r)(E,1)/r!
Ω 1.8649465124805 Real period
R 2.7488099643978 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 68355o1 113925by1 22785j1 Quadratic twists by: -3 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations