Cremona's table of elliptic curves

Curve 44352el1

44352 = 26 · 32 · 7 · 11



Data for elliptic curve 44352el1

Field Data Notes
Atkin-Lehner 2- 3- 7- 11+ Signs for the Atkin-Lehner involutions
Class 44352el Isogeny class
Conductor 44352 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 73728 Modular degree for the optimal curve
Δ -2589827530752 = -1 · 222 · 36 · 7 · 112 Discriminant
Eigenvalues 2- 3-  2 7- 11+  4  0  4 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-8364,-304432] [a1,a2,a3,a4,a6]
j -338608873/13552 j-invariant
L 3.9844519940833 L(r)(E,1)/r!
Ω 0.24902824963357 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 4 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 44352bm1 11088cb1 4928bi1 Quadratic twists by: -4 8 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations