Cremona's table of elliptic curves

Curve 80475b1

80475 = 3 · 52 · 29 · 37



Data for elliptic curve 80475b1

Field Data Notes
Atkin-Lehner 3+ 5+ 29- 37+ Signs for the Atkin-Lehner involutions
Class 80475b Isogeny class
Conductor 80475 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 1935360 Modular degree for the optimal curve
Δ -117976397877555075 = -1 · 37 · 52 · 292 · 376 Discriminant
Eigenvalues  2 3+ 5+ -1  2 -3 -6 -1 Hecke eigenvalues for primes up to 20
Equation [0,-1,1,-1358368,610037523] [a1,a2,a3,a4,a6]
Generators [6474:50649:8] [9354:199023:8] Generators of the group modulo torsion
j -11087569351746647265280/4719055915102203 j-invariant
L 17.2547680908 L(r)(E,1)/r!
Ω 0.32650181329905 Real period
R 13.211847062058 Regulator
r 2 Rank of the group of rational points
S 0.99999999997875 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 80475l1 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations