Cremona's table of elliptic curves

Curve 80475l1

80475 = 3 · 52 · 29 · 37



Data for elliptic curve 80475l1

Field Data Notes
Atkin-Lehner 3- 5- 29- 37- Signs for the Atkin-Lehner involutions
Class 80475l Isogeny class
Conductor 80475 Conductor
∏ cp 84 Product of Tamagawa factors cp
deg 9676800 Modular degree for the optimal curve
Δ -1.8433812168368E+21 Discriminant
Eigenvalues -2 3- 5-  1  2  3  6 -1 Hecke eigenvalues for primes up to 20
Equation [0,1,1,-33959208,76186771994] [a1,a2,a3,a4,a6]
Generators [7809:535963:1] Generators of the group modulo torsion
j -11087569351746647265280/4719055915102203 j-invariant
L 5.0249218931719 L(r)(E,1)/r!
Ω 0.14601604986273 Real period
R 0.40968440658485 Regulator
r 1 Rank of the group of rational points
S 0.99999999980545 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 80475b1 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations