Cremona's table of elliptic curves

Curve 101400di4

101400 = 23 · 3 · 52 · 132



Data for elliptic curve 101400di4

Field Data Notes
Atkin-Lehner 2- 3- 5+ 13+ Signs for the Atkin-Lehner involutions
Class 101400di Isogeny class
Conductor 101400 Conductor
∏ cp 8 Product of Tamagawa factors cp
Δ 30119288160000000 = 211 · 3 · 57 · 137 Discriminant
Eigenvalues 2- 3- 5+  4 -4 13+ -6  0 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-35153408,80211350688] [a1,a2,a3,a4,a6]
Generators [215174819189064:-3343127454771:62854898176] Generators of the group modulo torsion
j 31103978031362/195 j-invariant
L 9.3129556596183 L(r)(E,1)/r!
Ω 0.25454781539944 Real period
R 18.293136103864 Regulator
r 1 Rank of the group of rational points
S 0.99999999952023 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 20280d4 7800g4 Quadratic twists by: 5 13


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations