Cremona's table of elliptic curves

Curve 11360d1

11360 = 25 · 5 · 71



Data for elliptic curve 11360d1

Field Data Notes
Atkin-Lehner 2+ 5+ 71+ Signs for the Atkin-Lehner involutions
Class 11360d Isogeny class
Conductor 11360 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 311040 Modular degree for the optimal curve
Δ -1.4433834808E+19 Discriminant
Eigenvalues 2+ -2 5+  3 -4 -1  2 -7 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-3980061,-3062994965] [a1,a2,a3,a4,a6]
Generators [11692812740893405:-92031925062133820:5015138740613] Generators of the group modulo torsion
j -1702288080319928149504/3523885451171875 j-invariant
L 2.8441281871013 L(r)(E,1)/r!
Ω 0.053437144976538 Real period
R 26.61190252913 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 11360m1 22720p1 102240bx1 56800o1 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations