Cremona's table of elliptic curves

Curve 22720p1

22720 = 26 · 5 · 71



Data for elliptic curve 22720p1

Field Data Notes
Atkin-Lehner 2+ 5- 71+ Signs for the Atkin-Lehner involutions
Class 22720p Isogeny class
Conductor 22720 Conductor
∏ cp 9 Product of Tamagawa factors cp
deg 311040 Modular degree for the optimal curve
Δ -225528668875000000 = -1 · 26 · 59 · 715 Discriminant
Eigenvalues 2+  2 5-  3  4  1  2  7 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-995015,-382376863] [a1,a2,a3,a4,a6]
j -1702288080319928149504/3523885451171875 j-invariant
L 6.1212943479858 L(r)(E,1)/r!
Ω 0.075571535160318 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 9 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 22720z1 11360d1 113600o1 Quadratic twists by: -4 8 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations