Cremona's table of elliptic curves

Curve 124992ce2

124992 = 26 · 32 · 7 · 31



Data for elliptic curve 124992ce2

Field Data Notes
Atkin-Lehner 2+ 3- 7+ 31- Signs for the Atkin-Lehner involutions
Class 124992ce Isogeny class
Conductor 124992 Conductor
∏ cp 32 Product of Tamagawa factors cp
Δ 1.8360052567424E+25 Discriminant
Eigenvalues 2+ 3- -2 7+ -2 -4  0  4 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-66114156,-17699344976] [a1,a2,a3,a4,a6]
Generators [-10607730:-2201827328:9261] Generators of the group modulo torsion
j 167239798814188068697/96074132133998592 j-invariant
L 4.2619747832331 L(r)(E,1)/r!
Ω 0.057528281354044 Real period
R 9.2606077555343 Regulator
r 1 Rank of the group of rational points
S 0.99999999893818 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 124992gc2 3906q2 41664bs2 Quadratic twists by: -4 8 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations