Cremona's table of elliptic curves

Curve 48672bt2

48672 = 25 · 32 · 132



Data for elliptic curve 48672bt2

Field Data Notes
Atkin-Lehner 2- 3- 13+ Signs for the Atkin-Lehner involutions
Class 48672bt Isogeny class
Conductor 48672 Conductor
∏ cp 32 Product of Tamagawa factors cp
Δ -14412774445056 = -1 · 212 · 36 · 136 Discriminant
Eigenvalues 2- 3- -2  0  0 13+ -2  0 Hecke eigenvalues for primes up to 20
Equation [0,0,0,6084,0] [a1,a2,a3,a4,a6]
Generators [52:676:1] Generators of the group modulo torsion
j 1728 j-invariant
L 4.8541780901675 L(r)(E,1)/r!
Ω 0.41986523533948 Real period
R 1.4451595659685 Regulator
r 1 Rank of the group of rational points
S 1.0000000000041 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 48672bt2 97344fa1 5408a4 288d4 Quadratic twists by: -4 8 -3 13


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations